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Abstract—Significant efforts have been dedicated to employing
model-checking as a formal verification approach in the context
of smart contracts. The utilization of these tools necessitates an
in-depth knowledge on the part of the developer regarding both
the programming language and the implementation of model-
checking techniques. To provide accessibility to developers with
basic language proficiency, we present a technique for developing
a conversational application framework that can be seamlessly
linked with any model-checking tool for the purpose of creating
a smart contract. This architecture offers a robust and effective
approach to the development of safe and dependable smart
contracts. The utilization of natural language processing tech-
niques in conjunction with neural networks is employed for this
objective. Using this methodology, a prototype implementation
for Move smart contracts has been created and is used with
the VeriMove model-checking tool. Using the offered graphical
user interface, we were able to successfully build, compile and
test Move smart contracts across four different classes of smart
contracts. This strategy effectively decreases the amount of
time and effort needed for manual coding and debugging. In
addition, the use of the VeriMove model-checking tool guarantees
that the smart contracts produced are devoid of any potential
vulnerabilities and flaws.

Index Terms—move, smart contracts, NLP, model-checking

I. INTRODUCTION

Smart contracts [1] are programs that dictate the terms and
conditions of agreements that are created on a blockchain
network. There is no need for a third-party intermediary
because all transactions are carried out automatically. Once the
code is put on the blockchain, it becomes immutable, hence
necessitating the validation of smart contracts for accuracy
prior to their submission into the blockchain. Over the past
several decades, numerous instances of attacks have occurred,
resulting in financial losses attributed to vulnerabilities in-
cluded in smart contracts [2], [3]. The event involving the
DAO Attack resulted in an approximate financial loss of 50
million dollars [3]. Furthermore, developers are confronted
with the issue of comprehending the semantics of smart
contract programming languages and the utilization of diverse
formal analysis tools [4], owing to the proliferation of these
languages and techniques.

Numerous ongoing studies have advocated for the applica-
tion of machine learning (ML) and artificial intelligence (AI)
methodologies in the identification of vulnerabilities inside
smart contracts [5], [6]. The objective of these approaches is
to detect possible vulnerabilities in the code, such as reen-
trancy, timestamp dependencies, or integer overflow, which
have the potential to result in financial losses. Through the

examination of substantial volumes of smart contract code
and the utilization of machine learning algorithms, these tools
possess the capacity to assist developers in comprehending
the prospective risks and allocating their endeavors towards
fortifying the most pivotal segments of the code. While ML
and AI methods have demonstrated encouraging outcomes,
they are not infallible and should be employed alongside
additional security measures to guarantee the integrity of smart
contracts.

The objective of this research is to propose a methodology
for developing a conversational graphical user interface (GUI)
that can be utilized by developers with modest proficiency
in smart contract programming languages. The proposed ap-
proach involves generating a finite state machine representa-
tion for the contract. The developer is able to construct the
smart contract code by utilizing a feedback loop technique
that employs a question and response structure. Traditional
tokenization and lemmatization approaches are utilized in
order to train and build the model. A neural network consisting
of three layers has been constructed with the objective of
predicting the response. Our contributions to this project are
outlined below.

• In this study, we provide a proposed methodology for
the development of a conversational GUI that utilizes
tokenization, lemmatization, and neural networks. The
objective of this approach is to produce a state machine
for smart contracts based on natural language processing
techniques.

• A prototype was developed with a focus on the generation
of Move smart contracts through the integration of the
proposed framework with VeriMove. We updated the
parser for VeriMove to work with latest version of Move
language.

• The prototype is assessed across four categories of smart
contract use cases in order to demonstrate the effective-
ness of the process in developing smart contracts that can
be checked for particular properties and compiled using
the Aptos Move Compiler.

The subsequent sections of the paper are organized in the
following manner. Section II of this document presents a com-
prehensive overview of the Move programming language and
the VeriMove verification framework. The literature pertaining
to this study is discussed in Section III. In Section IV, an
overview of our methodology is provided. Section V of this



paper outlines the implementation of our framework for Move
smart contracts, as well as the accompanying experimental
results. Section VI serves as the conclusion for this research.

II. BACKGROUND

A. The Move Language

Move [7], [8] is a programming language that is mostly
used for the purpose of constructing smart contracts and
creating bespoke transaction logic. In Move, smart contracts
are implemented as modules, encompassing user-defined data
structures known as structs and module methods referred to
as procedures. Programs in the Move language are often
published and executed inside the context of a certain account
address on a blockchain network. In order to engage with the
blockchain program, a user is required to compose a Move
transaction script, which possesses the capability to import
modules and invoke their respective procedures.

In order to effectively manage memory, the Move program-
ming language employs a concept of ownership that bears
resemblance to Rust. Under this system, each variable is
assigned ownership of its stored value, and it is important
to note that each stored value can only have a single owner.
The borrow checker is a crucial component of the compiler
that is responsible for enforcing the ownership laws within
a program. The resource type in Move is instantiated as a
struct that is inaccessible for creation or destruction by code
external to its declaring module, and is inherently immutable
and irrevocable i.e., cannot be duplicated or replicated. In the
process of initialization, it is imperative that a resource be
saved globally, namely under an account address. The transfer
of resources is possible across different account addresses.
Although resources may appear to impose limitations, they
provide programmers with the ability to encode secure and
customisable digital assets that are exclusively controlled by
their owner. These resources are resistant to inadvertent or
purposeful replication or destruction by code originating from
other modules.

B. VeriMove

VeriMove [9] is an open-source, web-based, model-
checking, formal verification framework built on top of We-
bGME [10] and FSolidM [11]. Developers are able to define
the functionality of their application by utilizing an abstract
and graphical representation known as a transition system. The
system properties are represented through the utilization of
diverse natural language templates, which facilitate the verifi-
cation of safety, liveness, and deadlock freedom properties. To
ensure the validation of a smart contract, the transition system
undergoes a conversion process into a Behavior-Interaction-
Priority (BIP) model [12]. Subsequently, this model is trans-
lated into a NuSMV model [13]. The templated properties
are employed for the purpose of generating Computational
Tree Logic (CTL) specifications [14]. Once the developer is
satisfied with the model and properties, VeriMove generates
the equivalent Move source code.

III. RELATED WORK

Smart contracts are specifically engineered to automate the
implementation of agreements between several parties, hence
enhancing productivity and bolstering security measures. The
integration of ML and AI techniques into smart contracts can
significantly augment their functionalities by facilitating the
acquisition of knowledge and the ability to adjust behavior
depending on previous interactions. The primary areas of
emphasis in the domain of smart contracts pertaining to ML
and AI have revolved on detecting vulnerabilities and the
automated synthesis of smart contracts.

Vulnerability detection involves examining contracts for the
presence of known flaws. This task entails the examination
of the code and the identification of possible vulnerabilities
or flaws that may be susceptible to exploitation. ML and
AI techniques have the potential to significantly contribute
to this process through the analysis of extensive datasets. By
using these technologies, it becomes possible to detect trends
and anomalies that might potentially indicate a vulnerability.
SmartConDetect [15] is a static analysis tool that falls into
this particular category. It use static analysis techniques to
extract code fragments from Solidity contracts. Furthermore,
it utilizes Bidirectional Encoder Representations from Trans-
formers (BERT) to identify and detect any code patterns
that may be susceptible to vulnerabilities. Approximately 23
vulnerabilities can be detected at present. Degree-Free Graph
Convolutional Neural Network (DR-GCN) and a Temporal
Message Propagation network (TMP) has also been utilized for
the purpose of identifying established vulnerabilities in smart
contracts [16]. Graphs are constructed based on the relative
significance of program components inside the functions.
Momeni et al [5] employed Random Forests and Decision
Trees as analytical tools for the assessment of smart contract
vulnerabilities, resulting in an average accuracy rate of 95%.
Eth2Vec [17] is a static analysis tool that use machine learning
techniques to detect vulnerabilities, with a specific focus on
identifying code rewriting attacks. The investigation of con-
tracts in Solidity is conducted at the bytecode level rather than
at the source code level. One significant limitation associated
with this tool is the need for manual intervention for the inclu-
sion of vulnerability features. The ESCORT framework [18]
employs a Deep Neural Network (DNN) in conjunction with
transfer learning to identify and classify various vulnerabili-
ties. Text feature extraction is employed in the first step of the
research to construct a classification model [19]. The CatBoost
algorithm is used to accurately detect Ponzi Scheme smart
contracts on the Ethereum platform. The Peculiar [20] tool
employs a pre-training approach to discover vulnerabilities by
utilizing essential data flow graphs.

In contrast, automated smart contract synthesis pertains to
the generation of smart contracts without human involvement.
ML and AI techniques have the potential to be utilized for
the analysis and comprehension of needs and specifications
supplied by relevant stakeholders. This can facilitate the gen-
eration of smart contracts that effectively align with those



requirements. The majority of research conducted in this
field has mostly focused on certain domains such as Legal,
Accounting, and Supply Chain [21]–[23]. In their study, Aejas
et al [24] utilized Named Entity Recognition (NER) and Re-
laxation extraction (RE) techniques to convert English written
contracts in the supply chain domain into smart contract code.
iSyn [22] is a software application that facilitates the process
of semi-automated contract synthesis, with a specific focus
on legal financial agreements. The researchers have devised
a system called SmartIR, which serves as an intermediary
representation for legal contracts. This system employs a
template-based synthesis approach to generate the contracts.
Choudhury et al [23] present a conceptual framework for the
automated generation of smart contracts through the utilization
of domain-specific ontologies and semantic rules. This is
achieved by imposing constraints on abstract syntax trees.

Unlike the current research, our methodology is not limited
to any one smart contract language or domain. Through
integration with the model-checking framework, such as Ver-
iMove, the contracts undergo automated verification for both
known and unknown vulnerabilities. The conversational GUI
facilitates the process for developers to effortlessly generate
contracts through interactive engagement with the program.
They are not required to comprehend the language’s complex-
ities or the concepts underlying state machines. This enables
individuals to concentrate on the specific demands and criteria
of the domain within which the smart contract is being devel-
oped. The methodology has modular components that facilitate
the change of the employed natural language techniques.
Furthermore, the methodology encompasses a thorough testing
framework that facilitates developers in evaluating the efficacy
of the applied natural language techniques. This practice
guarantees the timely identification and resolution of any
vulnerabilities or weaknesses present in the smart contract,
hence improving the overall security and dependability of the
application.

IV. PROPOSED METHODOLOGY

In this section, we provide our proposed approach for the
generation of smart contracts that adhere to correct-by-design
principles, utilizing natural language. As previously stated, the
VeriMove model-checking framework is expanded to serve
this objective. Presently, the input data pertaining to a smart
contract is transmitted to VeriMove in the form of an Abstract
State Machine (ASM). Since ASM is a meta-language unto
itself, domain specialists may find it difficult to understand.
The objective of the present proposal is to facilitate the devel-
opment of a platform that may be utilized by developers with
restricted familiarity of smart contract programming languages
and limited proficiency in constructing state machine systems.
One of the key goals is to produce an interactive tool that uses
natural language and can communicate with the developer.
The input obtained from the developer is utilized to construct
a smart contract ASM that is subsequently passed on to the
VeriMove model-checking tool. The process of incorporating
conversational capabilities into the smart contract language

entails several sequential stages. To build the developer envi-
ronment, we employ conventional methods of natural language
processing. The focus of the current proposal is on VeriMove,
and as such, the construction of Move smart contracts is the
objective. This methodology is readily applicable to other
languages for smart contracts.

The sequential stages under this technique include: (i) The
initial step is to formulate a meta-model that is tailored to
the specific language under consideration. (ii) Gathering all
relevant facts relative to the establishment of contracts. (iii)
Preprocessing the data gathered. (iv) Generate training and
testing data. (v) Building the model and generating the ASM.

Fig. 1. Move Meta-model

A. Define the language meta-model
To develop conversational templates for a particular lan-

guage, the initial step involves constructing a meta-model that
outlines the structural framework of the language in question.
Primarily, this would encompass the attributes and constraints
imposed by the language. Attributes refer to the overarching
constituents of the meta-model element. Constraints refer to
the regulations and limitations that govern the relationships
and interactions among various components. The structure of
the meta-model for the Move smart contract language is shown
in Figure 1. Located at the apex of the hierarchical framework
are the Contracts, which possess the capacity to include a
diverse array of linguistic forms. In the Move programming



language, a module may be understood as being equivalent
to the specification of a contract. The information provided
includes the address, which refers to the account associated
with the deployment of the module. Additionally, it includes
imports, which are external libraries required for this module,
and resource types, which represent the fundamental entities
within the Move module. In addition to the aforementioned
features, a module will contain methods, state variables, and
events, which are delineated as meta-elements inside this
hierarchical framework. For instance, the Methods element
encompasses public and inline methods as its attributes.

B. Gathering relevant data
The primary and pivotal phase in this process entails the ac-

quisition of data pertaining to the language under investigation.
This entails collecting all possible patterns for the sentences
or queries that the developer may input. To start, we initiate
the process by establishing a set of comprehensive queries that
may be sent towards the developer on the contracts. Next, we
collect queries that are particular to the use case. Figure 2
presents a representative sequence of queries that may be
employed by the developer in the process of constructing an
auction contract. The order and manner in which these phrases
can be asked are defined for each of them.

Fig. 2. Auction Workflow

These patterns and questions serve as a foundation for
training the language model to understand and respond ac-
curately to various inputs related to contract development. By
defining the order and patterns, developers can ensure that the
language model is equipped to handle different ways of asking
questions about contracts. This comprehensive approach helps
in creating a more robust and versatile language model for
contract development.

C. Preprocessing the data
In the context of text data analysis, it is necessary to engage

in a series of preprocessing steps prior to constructing a

machine learning or deep learning model. In accordance with
the specified criteria, it is necessary to implement a range
of procedures in order to preprocess the data. The data has
been classified into four distinct categories, including tags,
patterns, responses, and components as shown in Figure 3.
Tags serve to classify the nature of the patterns. Examples:
contracts, auctions, etc. The patterns and responses encompass
a comprehensive compilation of many questions and their
corresponding responses. Each pattern in question is linked
to a corresponding component inside the meta-model through
the utilization of the Components element.

Fig. 3. Intents Classification

Tokenization is considered to be the fundamental and initial
step in processing textual data. Tokenization refers to the pro-
cedure of dividing a given text into smaller units, often words
or tokens. In this procedure, we sequentially cycle through the
patterns and proceed to tokenize the sentences. Subsequently,
we add each individual word to the words list. Additionally,
we compile a comprehensive inventory of courses according
to our categories. In this step, we will perform lemmatization
on each word and eliminate any duplicate words from the list.
Lemmatization involves the transformation of a word into its
lemma form, and subsequently storing the resulting objects for
future predictions.

D. Generate training and testing data

After lemmatizing and removing duplicate terms, we can
vectorize the training and testing data in the next phase. The
process of generating the training data entails supplying both
the input and the corresponding output. The input will consist
of a pattern, and the output will correspond to the class to
which the input pattern belongs. Since text is unintelligible to
a machine, we must first turn it into numeric form i.e., Vector-
ization . The process of vectorization entails the transforma-
tion of textual input into numerical representations, enabling
machine learning algorithms to comprehend and interpret the
information efficiently. Vectorization is a crucial step in natural
language processing tasks such as sentiment analysis, text
classification, and language translation. It involves techniques
like bag-of-words, word embeddings, or TF-IDF to convert
text into numerical features. These numerical representations
capture the semantic meaning and context of the text, allowing
machine learning models to make accurate predictions based
on the transformed data. The inclusion of this stage is of
utmost importance in the process of training models and
generating predictions using textual data.



E. Building the model and Generating the ASM

The training data is prepared and the subsequent step
involves constructing a neural network of three layers. First
layer containing 128 neurons, second layer containing 64
neurons, and third output layer containing the same number
of neurons as the number of output prediction intents with
softmax. It may be asserted with confidence that the neural
network has effectively acquired and applied the underlying
patterns present in the training data.

After obtaining the model, the GUI interface may be utilized
to initiate a dialogue. The GUI facilitates the entry of queries
by developers and the subsequent reception of results provided
by the trained model. Ensuring the relevance and accuracy
of the response component of the ASM may be achieved by
determining the class to which a question belongs. In order to
facilitate a coherent dialogue, we establish a predetermined
sequence of procedures to be implemented, which will be
converted into transitions inside the ASM framework. This
will guarantee a seamless and effective flow of the discussion.
The resulting ASM is subsequently utilized as an input for
the VeriMove framework in order to construct the Move smart
contract.

V. IMPLEMENTATION

The technique outlined in the preceding section was em-
ployed to expand the VeriMove model-checking framework
for the purpose of generating Move smart contracts. Figure 4
depicts the constituent elements of the framework in dashed
arrow, which has been seamlessly included into the preex-
isting VeriMove workflow for the purpose of producing the
smart contract ASM. In the previous iteration of VeriMove,
developers were required to utilize the WebGME GUI in
order to generate an Abstract State Machine (ASM) for the
smart contracts. The approach proved to be arduous due
to the requirement of the developer possessing an in-depth
understanding of ASM modeling, with a thorough awareness
of the intricacies of the Move language. The aforementioned
method remains same regardless of the specific application.

By employing the methods we have put forth, developers are
able to utilize a user-friendly GUI to engage in conversation
with the model-checking framework, hence facilitating the
development of smart contracts. Additionally, the prototype
implementation has undergone training using three predeter-
mined use cases, including token creation, NFT, and auction
contracts. Through the utilization of Python, Keras, and the
Natural Language Toolkit (NLTK) package, a strong and
adaptable prototype was successfully constructed. Further-
more, the utilization of Tkinter library templates greatly aided
the integration of a user-friendly GUI. The GUI facilitates
seamless interaction between the developer and the model-
checking framework by offering a user-friendly platform for
discourse. Efficient communication and collaboration between
the developer and the framework are essential factors that con-
tribute to the successful construction of smart contracts. The
prototype solution, which prioritizes three distinct use cases

Fig. 4. Framework Workflow

(token generation, NFT, and auction contracts), establishes a
robust basis for further development and modification.

TABLE I
EXPERIMENT RESULTS

Smart
Contract

Contract
Length

Questions
Count

Reachable
States

Property
Count

ERC20 56 6 32 4
ERC721 74 10 45 4
Auction 289 16 67 6

NFT Dao 800 36 136 10

Table I displays the results of the experiments in which a
series of smart contracts were generated using the proposed
framework and VeriMove. The term ContractLength pertains
to the number of lines of code that are produced within the
Move contract. QuestionsCount denotes the number of queries
that were used by the GUI to generate the ASM. The term
ReachableStates pertains to the degree of states inside the final
NuSMV model that may be accessed or reached within the
contract. The parameter PropertyCount denotes the number of
verification properties that underwent verification on the smart
contract in order to assess its adherence to the contract objec-
tives. The collection of contracts developed include ERC20,
ERC721, Auction, and NFT Dao. The generation of each
contract was facilitated by the utilization of a GUI to establish
communication with the framework. Subsequently, the created
abstract state machine (ASM) was passed to the VeriMove



tool. As indicated by the outcomes, we were able to validate all
contract properties. An additional step perfomed for verifying
the validity of the contracts is to compile the contracts using
the Aptos move compiler command line utility. All of the
contracts were successfully compiled without experiencing any
issues. This confirms that the contracts are syntactically correct
and adhere to the Move programming language specifications.
Furthermore, we executed a series of unit tests on each contract
to ensure their functionality and integrity. Overall, the process
of generating, verifying, and compiling the contracts has been
seamless and has demonstrated their robustness and suitability
for deployment.

VI. CONCLUSION

The work presented here introduces a system based on
natural language processing that can be seamlessly included
into existing model-checking tools for the purpose of generat-
ing smart contracts. The framework employs neural networks
to comprehend the smart contract’s meta-model and initiate
conversation with the developers. A prototype solution was de-
veloped to produce Move smart contracts through integration
with VeriMove. The experimental findings demonstrate that
four distinct categories of Move contracts were successfully
constructed. We validated the contracts for the properties to
ensure their validity. By utilizing the Aptos Move compiler,
we successfully verified that the tool produces Move contracts
that can be compiled without encountering any issues.

In the future, we hope to incorporate other Named Entity
Recognition (NER) and Sentiment analysis algorithms into the
approach and conduct a comparative study of the framework.
Additionally, we want to explore various hyperparameters for
the neural network and conduct an empirical study in order to
enhance the predictive performance of the model. To enhance
the performance of the neural network’s prediction model, it
is necessary to train it on an expanded dataset and carefully
adjust its parameters through fine-tuning. In addition, our
intention is to carry out a thorough assessment of the frame-
work’s efficacy by a comparative analysis with established
tools and procedures within the respective domains. This will
facilitate a more thorough understanding of its merits and areas
for enhancement.
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